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EXERCISES 4-29

4.6 (Congestion control using RED [LPW+02]) A number of improvements can
be made to the model for Internet congestion control presented in Section 4.4.
To ensure that the router’s buffer size remains positive, we can modify the buffer
dynamics to satisfy

dbl

dt
=

{
sl− cl bl > 0
sat(0,∞)(sl− cl) bl = 0.

In addition, we can model the drop probability of a packet based on how close we
are to the buffer limits, a mechanism known as random early detection (RED):

pl = ml(al) =





0 al(t)≤ blower
l

ρlri(t)−ρlblower
l blower

l < al(t) < bupper
l

ηlri(t)− (1−2bupper
l ) bupper

l ≤ al(t) < 2bupper
l

1 al(t)≥ 2bupper
l ,

dal

dt
=−αlcl(al−bl),

where αl , bupper
l , blower

l and pupper
l are parameters for the RED protocol.

Using the model above, write a simulation for the system and find a set of
parameter values for which there is a stable equilibrium point and a set for which
the system exhibits oscillatory solutions. The following sets of parameters should
be explored:

N = 20,30, . . . ,60, blower
l = 40 pkts, ρl = 0.1,

c = 8,9, . . . ,15 pkts/ms, bupper
l = 540 pkts, αl = 10−4,

τ = 55,60, . . . ,100 ms.

4.7 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading is shown below.

m1

k1

m2

c1

k2 c2

F

F

Show that the dynamics can be written as

(m1 +m2)
d2z1

dt2 +(c1 + c2)
dz1

dt
+(k1 + k2)z1 = m2

d2l
dt2 + c2

dl
dt

+ k2l.

Are there parameter values that make the dynamics particularly simple?

Figure 1: From Aström-Murray, Second Edition (2016), Chapter 4.

1. [12pts] The goal of the problem is to derive the equations of motion of an atomic
force microscope (AFM) with piezotube depicted in Figure 1 using the Euler-
Lagrange equations of motion without considering the gravity forces. The AFM
is modeled as two masses separated by an ideal piezo element that exerts a force
F on both masses as illustrated in the figure. The generalized coordinate of the
system is q = (z1, z2), where zi, i = 1, 2, is the vertical position of the center of mass
of mass i, whereas the generalized velocity is q̇ = (ż1, ż2).
To obtain these equations of motion, answer the following questions:

(a) [1pt] Determine the total kinetic co-energy T ∗m(q, q̇) of the system.

(b) [1pt] Determine the potential function V (q).

(c) [1pt] Determine the Lagrangian function L(q, q̇).

(d) [1pt] Determine the Rayleigh dissipation function.

(e) [2pts] Determine the vector τ of external generalized forces.

(f) [3pts] Determine the Euler-Lagrange equations of motion.

(g) [3pts] Define u = F as the input and y = q1 the output of the system. Choose
the state variable vector x and express the system as the linear system

ẋ = Ax+Bu
y = Cx+Du

giving the explicit values of the matrices A,B,C,D.

Note that q1 = z1, q2 = z2 in the following.

(a) [1pt] The total kinetic co-energy T ∗m(q, q̇) is given by 1
2
m1ż

2
1 + 1

2
m2ż

2
2 =

1
2
q̇TMq̇, with M = diag(m1,m2).

(b) [1pt] V (q) = 1
2
k1q

2
1 + 1

2
k2q

2
2.

(c) [1pt] L(q, q̇) = 1
2
m1q̇

2
1 + 1

2
m2q̇

2
2 − 1

2
k1q

2
1 − 1

2
k2q

2
2.
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(d) [1pt] D(q̇) = 1
2
c1q̇

2
1 + 1

2
c2q̇

2
2.

(e) [2pts] τ =

[
F
−F

]
.

(f)
∂L

∂q̇
=

[
m1q̇1

m2q̇2

]
[0.5pt]

Hence
d

dt

∂L

∂q̇
=

[
m1q̈1

m2q̈2

]
[0.5pt]

Also
∂L

∂q
= −

[
k1q1

k2q2

]
[0.5pt]

and overall

d

dt

∂L

∂q̇
− ∂L

∂q
=

[
m1q̈1

m2q̈2

]
+

[
k1q1

k2q2

]
= −

[
c1q̇1

c2q̇2

]
+

[
F
−F

]
[1pt]

having born in mind that

∂D

∂q̇
=

[
c1q̇1

c2q̇2

]
[0.5pt]

(g) The EL equations of motion are

m1q̈1 + c1q̇1 + k1q1 = u
m2q̈2 + c2q̇2 + k2q2 = −u [0.5pt]

The choice of state variables

x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2 [0.5pt]

returns the equations

ẋ1 = x2

ẋ2 = − k1
m1
x1 − c1

m1
x2 + 1

m1
u

ẋ3 = x3

ẋ4 = − k2
m2
x3 − c2

m2
x4 + 1

m2
u

[1pt]

i.e.

A =




0 1 0 0
− k1
m1
− c1
m1

0 0

0 0 0 1
0 0 − k2

m2
− c2
m2


 , B =




0
1
m1

0
− 1
m2


 ,

C =
[
1 0 0 0

]
.

[1pt]
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2. [16pts] (Alcohol metabolism) The metabolism of alcohol in the body can be
modeled by the normalized nonlinear compartmental model

ẋ1 = a(x2 − x1) + u

ẋ2 = b(x1 − x2)− cx2

d+ x2

+ u (1)

where:

• x1, x2 ∈ R are the concentrations of alcohol in the compartments;

• u ∈ R is the intravenous and gastrointestinal injection rate;

• a, b, c, d are all positive and constant parameters.

Answer the following questions:

(a) [4.5pts] Given a constant input ū, with ū a positive constant, determine the
equilibrium x̄ = (x̄1 x̄2)T of the system. State a condition on ū that guarantees
the equilibrium vector x̄ to have both positive components.

(b) [3.5pts] Linearize the dynamics of the compartmental model around the equi-
librium pair (x̄, ū) obtained using the identities

b
ū

a
+ ū =

c

2
, ū = ad, c = 4bd,

that is determine the matrices A,B in

˙δx = Aδx+Bδu.

(c) [3pts] For the linearized system obtained in Question (b)

˙δx = Aδx+Bδu,

set δu = 0 (this corresponds to set u = ū). Determine whether the origin of
the resulting system is asymptotically stable, stable or unstable. What is the
expected behavior of the solutions of the original nonlinear system (1) with
u = ū that start sufficiently close to the equilibrium x̄? Motivate your answer.

(d) [5pts] Set a = 3, b = 2 and remember that δu is a scalar (same intravenous
and gastrointestinal injection rate). Let the output be

δy = δx1.

Compute the unitary step response of the linearized system, that is the output
response of the linearized system when δx(0) = 0 and δu(t) = 1 for all t ≥ 0.
Hint If you did not determine the matrices A,B in Question (b), then use the
following data

A =

[
−3 3
2 −4

]
, B =

[
1
1

]
.
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(a) Solve the equation (bars are omitted from the variables)

0 = a(x2 − x1) + u

0 = b(x1 − x2)− cx2

d+ x2

+ u [0.5pt]

From the first equation

x1 − x2 =
u

a
[0.5pt]

which replaced in the second one gives

0 = b
u

a
− cx2

d+ x2

+ u [1pt]

returning

x2 =
(
b

a
+ 1)ud

c− (
b

a
+ 1)u

. [1pt]

Hence

x1 =
(
b

a
+ 1)ud

c− (
b

a
+ 1)u

+
u

a
[0.5pt]

x2 (and therefore x1) is positive provided that

(
b

a
+ 1)u < c. [1pt]

(b) The Jacobians of the right-hand side of (1) are

[1pt]
∂f

∂x
=



−a a

b −b− cd

(d+ x2)2


 , [0.5pt]

∂f

∂u
=

[
1
1

]

Under the condition

(
b

a
+ 1)u =

c

2
, u = ad,

the equilibrium is

[1pt] x2 = d, x1 = 2d.

Hence, when the Jacobians are evaluated at this particular equilibrium,
they return

[1pt] A =

[
−a a

b −b− c

4d

]
=

[
−a a
b −2b

]
, B =

[
1
1

]
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(c) The eigenvalues of A are given by the roots of

s2 + (a+ 2b)s+ ab = 0 [0.5pt]

namely

s1,2 =
−(a+ 2b)±

√
(a+ 2b)2 − 4ab

2
=
−(a+ 2b)±

√
a2 + 4b2

2
[0.5pt]

[1.5pt] Since a, b are positive parameters, the eigenvalues are real distinct
and strictly negative. Hence, the origin of the linearized system is asymp-
totically stable. [0.5pt] The solutions that start sufficiently close to the
origin converge asymptotically to it.

(d) For the given values of a, b, the linearized system matrices are

A =

[
−3 3
2 −4

]
, B =

[
1
1

]
, C =

[
1 0

]
[1pt]

Output response to be computed similarly as in Tutorial 7, Exercise 5.

Possibility 1: (Matrix exponential) The matrix A can be decomposed as

A = V DV −1

with

V =

[
−1 3
1 2

]
, D =

[
−6 0
0 −1

]
. [1pt]

Then note that the output-response is given by

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ

= CV

∫ t

0

eD(t−τ)V −1Bdτ

= CV

∫ t

0

eD(t−τ)dτV −1B

= CV
∣∣−D−1eD(t−τ)

∣∣τ=t

τ=0
V −1B

= −CVD−1V −1B + CVD−1eDtV −1B [1pt]

Observe that

CVD−1 =
[
1 0

] [−1 3
1 2

] [
−1

6
0

0 −1

]
=
[
−1 3

] [−1
6

0
0 −1

]
=
[

1
6
−3
]

V −1B =

[
−1 3
1 2

]−1 [
1
1

]
= −1

5

[
2 −3
−1 −1

] [
1
1

]
=

[
1
5
2
5

]
[1pt]
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Hence

y(t) = −CVD−1V −1B + CVD−1eDtV −1B

= −
[

1
6
−3
] [1

5
2
5

]
+
[

1
6
−3
] [e−6t 0

0 e−t

] [
1
5
2
5

]

=
1

30

(
e−6t − 36e−t + 35

)
. [1pt]

Possibility 2: (Transfer function and Inverse Laplace transform). The
transfer function is given by

G(s) = C(sI − A)−1B =
[
1 0

] [s+ 3 −3
−2 s+ 4

]−1 [
1
1

]

=
1

s2 + 7s+ 6

[
1 0

] [s+ 4 3
2 s+ 3

] [
1
1

]

=
1

(s+ 6)(s+ 1)

[
s+ 4 3

] [1
1

]
=

s+ 7

(s+ 6)(s+ 1)
[1.5pt]

The output transfer function is equal to

Y (s) = G(s)
1

s
=

s+ 7

s(s+ 6)(s+ 1)
=
a

s
+

b

s+ 6
+

c

s+ 1
[1pt]

for [0.5pt] a = 7
6
, b = 1

30
, c = −6

5
which gives again the time response

y(t) =
7

6
+

1

30
e−6t − 6

5
e−t =

1

30

(
e−6t − 36e−t + 35

)
. [1pt]
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3. [16pts] Consider the linear system

ẋ = Ax+Bu =

[
1 1
0 0

]
x+

[
0
1

]
u

y = Cx =
[
c1 c2

]
x,

(2)

where x ∈ R2 is the state vector, u ∈ R is the control input and y ∈ R is the
measured output.

(a) [1pt] Determine the reachability matrix Wr and discuss whether the system is
reachable or not.

(b) [1pt] Determine the reachable canonical form of the state space equation.

(c) [1pt] Determine the reachability matrix W̃r of the reachable canonical form.

(d) [1pt] Determine the gain matrix K such that the eigenvalues of A − BK are
equal to the values {−1,−1}. Write explicitly the feedback u = −Kx.

(e) [2pts] Determine the observability matrix Wo of system (2). Assume that you
can choose either a sensor that measures x1 or a sensor that measures x2, but
not both of them simultaneously. Which sensor would you choose to guarantee
the observability of the system? Give the corresponding output matrix C.
Motivate your answer.

(f) [1pt] Write the observable canonical form and compute the observability ma-
trix W̃o of the system in the observable canonical form.

(g) [2pts] Determine the observer gain L that makes the characteristic polynomial
of the matrix A − LC coincide with the polynomial (s + 3)2 and provide the
explicit expression of the observer, namely provide the matrices F,G,H in the
dynamical system

˙̂x = Fx̂+Gy +Hu.

(h) [4pts] Consider now the case in which y = x1. We want to design a new
asymptotic observer of dimension 1 instead of 2. Namely, consider the dynam-
ical system (the so-called reduced order observer)

ξ̇ = −gξ + u− g(1 + g)y
x̂2 = ξ + gy

(3)

where g is a constant parameter to design, ξ ∈ R is the state variable of the
reduced order observer, x̂2 ∈ R is the estimate of the unmeasured state x2.
Introduce the estimation error e = x2 − x̂2 and derive its dynamics ė = f(e)
explicitly stating the function f(e). Then determine all the values of the pa-
rameter g that guarantee the estimation error e to converge exponentially to
zero.

(i) [3pts] Using the reduced order observer derived in Question (h) and the state
feedback controller u = −Kx derived in Question (d), design a dynamic output
feedback controller of dimension 1, namely a controller of the form

ξ̇ = aξ + by
u = cξ + dy

(4)

8



with a, b, c, d parameters to be determined, that asymptotically stabilizes the
closed-loop system.
Hint Start from the reduced order observer (3) and determine an expression
of u that only uses the measurement y and the controller state ξ. Use the same
idea as in the design of the output feedback controller [Textbook, Chapter 7].

(j) (Bonus) [5pts] Sketch the main steps that you would take to prove that
the proposed dynamic controller yields an asymptotically stable closed-loop
system.
Hint There is no need to have answered Question (h) to answer this one. If you
did not answer Question (d), use as state feedback controller u = −k1x1−k2x2,
with k1, k2 two real numbers.

(a)

[0.5pts]Wr =

[
0 1
1 0

]
; [0.5pts] det Wr = −1 6= 0→ system is reachable

(b)
det(sI − A) = s2 − s =: s2 + a1s+ a2 [0.5pts]

hence

ż =

[
1 0
1 0

]
z +

[
1
0

]
u , [0.5pts]

(c)

W̃r =

[
1 1
0 1

]
. [1pt]

(d) The desired characteristic polynomial is

[0.5pt] (s+ 1)2 = s2 + 2s+ 1 =: s2 + p1s+ p2

K =
[
p1 − a1 p2 − a2

]
W̃rW

−1
r

p1 = 2, p2 = 1

W̃r =

[
1 1
0 1

]

W−1
r =

[
0 1
1 0

]−1

=
1

−1

[
0 −1
−1 0

]
=

[
0 1
1 0

]

Hence

[0.5pt]

K =
[

3 1
] [ 1 1

0 1

] [
0 1
1 0

]

=
[

3 1
] [ 1 1

1 0

]

=
[

4 3
]

The feedback is
u = −4x1 − 3x2.
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Check

A−BK =

[
1 1
0 0

]
−
[

0
1

] [
4 3

]

=

[
1 1
−4 −3

]

whose characteristic polynomial is indeed s2 + 2s+ 1.

(e) W0 =

[
c1 c2

c1 c1

]
[0.5 pts]; det W0 = c1(c1− c2) [0.5 pts]. To be observable,

it must be c1 6= 0 and c1 6= c2. Since we can have either (i) c1 = 1 and
c2 = 0 or (ii) c1 = 0 and c2 = 1, the only possible case is (i), that is

[1pt] C =
[
1 0

]
.

(f)

ż =

[
1 1
0 0

]
z

y =
[

1 0
]
z

[0.5 pts] W̃0 =

[
1 0
1 1

]
[0.5 pts]

Given the previous choice of C, the system is already in the observer canon-
ical form. Therefore W̃o = Wo.

(g)

L = W−1
0 W̃0

[
p1 − a1

p2 − a2

]

(s+ 3)2 = s2 + 6s+ 9 = s2 + p1s+ p2


 [0.5 pt]

L = W−1
0 W̃0

[
p1 − a1

p2 − a2

]
=

[
p1 − a1

p2 − a2

]
=

[
6 + 1

9

]
=

[
7
9

]
[0.5 pt]

The observer takes the form

[0.5pt]

˙̂x = Ax̂+Bu+ L(y − Cx̂)
= (A− LC)x̂+Bu+ Ly

=⇒
F = A− LC, G = L, H = B

Hence

[0.5pts]

F = A− LC
=

[
1 1
0 0

]
−
[

7
9

] [
1 0

]

=

[
−6 1
−9 0

]
, G =

[
7
9

]
, H =

[
0
1

]

(h) We have

ė = ẋ2 − ˙̂x2 = u− ξ̇ − gẏ = u− (−gξ + u− g(1 + g)y)− gẋ1

= u− (−gξ + u− g(1 + g)x1)− g(x1 + x2)

= g(x̂2 − gx1) + g(1 + g)x1 − gx1 − gx2

= −g(x2 − x̂2)− g2x1 + g(1 + g)x1 − gx1 = −ge [3pts]

Hence, the estimation error exponentially converges to zero for all g > 0
[1pts].
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(i) The proposed controller of dimension 1 would be

[1pts]
ξ̇ = −gξ + u− g(1 + g)y
x̂2 = ξ + gy
u = −4y − 3x̂2

and therefore

[1.5pts]
ξ̇ = −gξ − 4y − 3(ξ + gy)− g(1 + g)y

= −(g + 3)ξ − (4 + 4g + g2)y
u = −3ξ − (3g + 4)y

Hence, [0.5pts] a = −(g + 3), b = −(4 + 4g + g2), c = −3, d = −(3g + 4).

(j) Bonus: [5 pts]

i. First write down the closed-loop system in the variables x, ξ. Observe
that

ẋ1 = x1 + x2

ẋ2 = u = cξ + dx1

ξ̇ = aξ + bx1

[1pt] (5)

ii. By defining e = x2 − ξ − gx1, the system (5) is transformed to

ẋ1 = x1 + x2

ẋ2 = u = c(x2 − e− gx1) + dx1

ė = −ge
[1.5pts]

which in state-space form amounts to


ẋ1

ẋ2

ė


 =




1 1 0
d− gc c −c

0 0 −g





x1

x2

e


 =




1 1 0
−4 −3 3
0 0 −g





x1

x2

e




=




1 1 0
−k1 −k2 k2

0 0 −g





x1

x2

e


 [1.5pts]

iii. [1pt] By construction the matrix is Hurwitz, and this proves the claim.

Hint (It should probably be u = −k1x1 − k2x̂2!) if we initialized with the hint
we obtain

ẋ1 = x1 + x2

ẋ2 = u = −k1x1 − k2x̂2 = −k1x1 − k2x2 + k2e

ė = f(e).

[3pt] (6)

[1pt] With e converging exponentially to zero and [1pt] having the matrix
[

1 1
−k1 −k2

]

to be Hurwitz, stability of the closed-loop system is guaranteed.
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Σ C(s) Σ P (s)
u ν

−1

r
e

d

y

Figure 2: Negative feedback block diagram considered in Problem 4.

4. [10 pts] Consider the negative feedback control system in Figure 2.

Let P (s) be the transfer function of the linearized model of a car studied e.g. in
Lecture 13, namely

P (s) =
b

s+ a

where a, b are positive parameters. You are asked to design the cruise control of the
car in a scenario in which the car is riding on a road whose slope changes periodically,
producing a periodic disturbance d(t) that takes the form

d(t) = d sin(ωt),

where d, ω are two positive parameters, of which only ω is known. Consider initially
a cruise control given by a PI control of the form

C(s) =
kps+ ki

s
.

Assume that the gains kp, ki have been designed in such a way that the closed-loop
system is asymptotically stable.

(a) [4pts] Determine the transfer function Ged(s) from the disturbance d to the
error e and the steady state error response to the disturbance d(t) = d sin(ωt).
Hint To determine the steady state error response, express Ged(iω) in the polar
form M(ω)eiθ(ω).

(b) [2pts] Fix the values a = 0.0101, b = 1.32, kp = 0.5, ki = 0.0051. Give the
numerical expression of the steady state error response derived before. Evaluate
the gain1M(ω) at ω = 0.1 rad/sec.

(c) [2pts] We want now to design a new controller C(s). Consider the factorization
dC1(s)dC2(s) of the controller denominator, and let dC2(s) = s2 + ω2. Assume

that nC(s)
dC1(s)

is the idealized PID control

nC(s)

dC1(s)
= kp +

ki
s

+ kds.

Determine, if possible, the gains of the PID control such that the denominator
of the transfer function of the closed-loop system is s4 + s3 + 3s2 + 2s+ 1. To
answer this question, set a = b = ω = 1.

1This is the attenuation/amplification factor of the disturbance magnitude.
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(d) [2pts] Check that the steady state error response is zero when r = 0 and
d(t) = d sin(t).

(a)

Ged(s) = − P (s)

1 + C(s)P (s)

= − nP (s)dC(s)

dP (s)dC(s) + nP (s)nC(s)

hence

Ged(s) = −
b

s+ a

1 +
ki + kps

s

b

s+ a

= − bs

s(s+ a) + b(ki + kps)

= − bs

s2 + (a+ bkp)s+ bki

Since the closed-loop system is asymptotically stable the steady state error
response is given by

e(t) = M(ω) sin(ωt+ θ(ω)).

Compute

Ged(iω) = − ibω

(−ω2 + bki) + i(a+ bkp)ω

= −ibω[(−ω2 + bki)− i(a+ bkp)ω]

(−ω2 + bki)2 + (a+ bkp)2ω2

= −ibω(−ω2 + bki) + bω(a+ bkp)ω

(−ω2 + bki)2 + (a+ bkp)2ω2

=
ibω(ω2 − bki)− bω(a+ bkp)ω

(−ω2 + bki)2 + (a+ bkp)2ω2

Hence

Ged(iω) =
bω√

(−ω2 + bki)2 + (a+ bkp)2ω2

︸ ︷︷ ︸
M(ω)

e

iarctan
(ω2 − bki)
−(a+ bkp)ω︸ ︷︷ ︸
θ(ω)

from which
e(t) = M(ω) sin(ωt+ θ(ω))d.
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(b)

M(ω̄) =
bω̄√

(−ω̄2 + bki)2 + (a+ bkp)2ω̄2

=
1.32ω̄√

(−ω̄2 + 1.32 · 0.0051)2 + (0.0101 + 1.32 · 0.5)2ω̄2

=
1.32ω̄√

(−ω̄2 + 0.0067)2 + 0.45ω̄2
= 1.96752 [1pt]

θ(ω̄) = arctan (ω̄2−bki)
−(a+bkp)ω̄

= −0.0487302 rad [1pt]

(c) The transfer function from d to y is given by

Gyd =
P

1 + PC
=

b

s+ a+ bC
=

b(s2 + 1)s

(s2 + 1)(s+ a)s+ b(kps+ ki + kds2)

=
(s2 + 1)s

(s2 + 1)(s+ 1)s+ kps+ ki + kds2

=
(s2 + 1)s

s4 + s+ s3 + s2 + kps+ ki + kds2

=
(s2 + 1)s

s4 + s3 + (kd + 1)s2 + (kp + 1)s+ ki

Hence, kp = 1, ki = 1, kd = 2.

(d) The Laplace transform of d(t) = d sin(t) is given by

D(s) =
d

s2 + 1

Hence

Y (s) = Gyr(s)D(s) =
(s2 + 1)s

s4 + s3 + 3s2 + 2s+ 1

d

s2 + 1

=
sd

s4 + s3 + 3s2 + 2s+ 1

Since closed-loop system is assumed to be stable, the Final Value Theorem
can be used to obtain

yss = lim
s→0

sY (s) = lim
s→0

s2d

s4 + s3 + 3s2 + 2s+ 1
= 0.
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5. [16pts] Consider a negative feedback system as in Figure 2, where d = 0, and the
process transfer function is

P (s) =
0.5s+ 1

s(s− 1)
.

Note the unstable pole due to the monomial s− 1 at the denominator.

(a) [3pts] Consider the Bode diagrams in Figure 3, 4, 5. Determine which Bode
diagram (A, B, or C) corresponds to the given process transfer function P (s).
Motivate your answer.
Hint To give the right answer it is essential that you recall the phase plot
corresponding to an unstable pole. This has been discussed in [Lecture 11,
Slide 12]. An example of Nyquist plot of a transfer function with an unstable
pole has been discussed in [Lecture 12, Slide 20].
Note Matlab, which was used to generate the Bode diagrams, use the conven-
tion that negative numbers have phase −180◦ instead of 180◦.

(b) [2pts] Draw the Nyquist plot (including the circle at infinity and specifying the
direction of the curve as the frequency ω goes from −∞ to +∞) corresponding
to the Bode diagram that you have chosen in the previous question.

(c) [3pts] For the stability study to follow, it is convenient to compute analyti-
cally the phase crossover frequency ωpc. To this purpose, compute the nonzero
frequency ωpc at which the imaginary part of P (iωpc) is zero. Then compute
the gain |P (iωpc)|.

(d) [2pts] Using the Nyquist plot and the gain |P (iωpc)| computed before, explain
whether or not the closed-loop system is stable. Motivate your answer.
Hint For the stability study, it is useful to know the gain |P (iωpc)|. If you
have not found it, go the next question, answer it and use the finding there to
finalise the stability study.

(e) [2pts] Compute the transfer function of the closed-loop system and discuss
whether or not its poles have all strictly negative real part. Is your finding
consistent with the answer to the previous question?

(f) [4pts] Design a P (proportional) controller

C(s) = kp

such that the closed-loop system

i. is asymptotically stable; and has

ii. a zero steady state error response to a step input and

iii. a constant esteady steady state error response to a unitary ramp input such
that |esteady| ≤ 0.1.

(g) (Bonus) [3pts] Consider again the P controller C(s) = kp that stabilizes
the system. Motivate using the Nyquist plot why the value of kp you found in
Question (f) i. makes the closed-loop system asymptotically stable.
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(a) The correct one is the Bode diagram in Figure 3, as it is inferred by the
fact that the unstable pole s + 1 contribute a positive phase, rather than
a negative one, thus causing the phase to raise to −90◦ [1pt]. The Bode
diagram in Figure 4 can be excluded because it has the typical shape cor-
responding to one stable zero and one stable pole [1pt]. The Bode diagram
in Figure 5 can be excluded because the second corner frequency (the one
corresponding to the zero) occurs at ω = 100, as can be understood from
the magnitude diagram, while P (s) has a zero at 2 rad/sec [1pt].

(b) Nyquist diagram This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!
This is an easy way to box text within a document!

(c)

[1pt]

P (iωpc) =
i0.5ωpc + 1

iωpc(iωpc − 1)

=
i0.5ωpc + 1

−ω2
pc − iωpc

=
(i0.5ωpc + 1)(−ω2

pc + iωpc)√
ω4
pc + ω2

pc

=
−1.5ω2

pc + i(ωpc − 0.5ω3
pc)√

ω4
pc + ω2

pc

Thus the nonzero ωpc is given by setting [1pt] ωpc − 0.5ω3
pc = 0, that is

ωpc =
√

2

From

P (iωpc) =
i0.5ωpc + 1

iωpc(iωpc − 1)

we have

[1pt] |P (iωpc)| =

√
1+

ω2pc
4

ωpc
√
ω2
pc+1

∣∣∣∣∣∣
ωpc=

√
2

= 1
2

√
ω2
pc+4

ωpc
√
ω2
pc+1

∣∣∣∣
ωpc=

√
2

= 1
2

√
6√

2
√

3

= 1
2
.
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(d) Since the Nyquist plot is crossing the real axis at the point (−1
2
, 0), the

number of net clockwise encirclements of the point (−1, 0) is N = 1 [1 pt].
Since the number of unstable open loop poles is 1 then P = 1 and the
number of unstable poles of the closed-loop system is Z = 2 [1 pt]. Thus
the closed-loop system is unstable. 1 point extra if they specify the number
of unstable poles.

(e)

[1pt]
P

1 + P
=

0.5s+1
s(s−1)

1 + 0.5s+1
s(s−1)

=
0.5s+ 1

s2 − 0.5s+ 1

[1pt] s1,2 =
0.5±

√
0.25− 4

2
,

which confirms that there are two unstable poles in the closed-loop system.

(f) [2pts] The denominator of the closed-loop system transfer function is

s2 + (
kp
2
− 1)s+ kp

The roots of the corresponding equation have strictly negative real part if
and only if kp > 2. Regarding the tracking properties, the pole at s = 0
guarantees a zero steady state error response to a step reference trajectory
[1pt]. The steady state error response is given by

[1pt] esteady = | lim
s→0

s
1

1 + kp
0.5s+ 1

s(s− 1)

1

s2
| = | 1

kp
1

−1

| = 1

|kp|
.

[1pt] Thus a gain kp ≥ max{2, 10} = 10 stabilises the system and gives a
steady state error response less than 1/10.

(g) [5pts] From the Nyquist plot we see that if the gain of the P controller
is strictly greater than |P (iωpc)|−1 = 2, then the number of net clockwise
encirclements of the critical point becomes −1 (one counterclockwise encir-
clement), and therefore we have Z = N + P = 0, thus showing closed-loop
stability.
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