Control Engineering 2016-2017
 Exam 8 November 2016
 Prof. C. De Persis

- You have 3 hours to complete the exam.
- You can use books and notes but not smart phones, computers, tablets and the like.
- There are questions labeled as Bonus. These questions are optional and give you extra points if answered correctly.
- Please write down your Surname, Name, Student ID on each sheet.
- You will be given 2 sheets. If you need more, please ask. Please hand in all the sheets that you have used and the text of the exam.
- If you return the sheets, then your exam will be graded, unless you explicitly write "do not grade" on the first page.

For the grader only

	Exercise 1	Exercise 2	Exercise 3	Exercise 4	Exercise 5	Total
Points	$/ 12$	$/ 16$	$/ 16$	$/ 10$	$/ 16$	$/ 70$
Bonus	$\star \star \star$	$\star \star \star$	$/ 5$	$\star \star \star$	$/ 5$	$/ 10$

Figure 1: From Aström-Murray, Second Edition (2016), Chapter 4.

1. [12pts] The goal of the problem is to derive the equations of motion of an atomic force microscope (AFM) with piezotube depicted in Figure 1 using the EulerLagrange equations of motion without considering the gravity forces. The AFM is modeled as two masses separated by an ideal piezo element that exerts a force F on both masses as illustrated in the figure. The generalized coordinate of the system is $q=\left(z_{1}, z_{2}\right)$, where $z_{i}, i=1,2$, is the vertical position of the center of mass of mass i, whereas the generalized velocity is $\dot{q}=\left(\dot{z}_{1}, \dot{z}_{2}\right)$.
To obtain these equations of motion, answer the following questions:
(a) $[1 \mathrm{pt}]$ Determine the total kinetic co-energy $T_{m}^{*}(q, \dot{q})$ of the system.
(b) $[1 \mathrm{pt}]$ Determine the potential function $V(q)$.
(c) $[1 \mathrm{pt}]$ Determine the Lagrangian function $L(q, \dot{q})$.
(d) $[1 \mathrm{pt}]$ Determine the Rayleigh dissipation function.
(e) [2pts] Determine the vector τ of external generalized forces.
(f) [3pts] Determine the Euler-Lagrange equations of motion.
(g) [3pts] Define $u=F$ as the input and $y=q_{1}$ the output of the system. Choose the state variable vector x and express the system as the linear system

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

giving the explicit values of the matrices A, B, C, D.

Note that $q_{1}=z_{1}, q_{2}=z_{2}$ in the following.
(a) $[1 \mathrm{pt}]$ The total kinetic co-energy $T_{m}^{*}(q, \dot{q})$ is given by $\frac{1}{2} m_{1} \dot{z}_{1}^{2}+\frac{1}{2} m_{2} \dot{z}_{2}^{2}=$ $\frac{1}{2} \dot{q}^{T} M \dot{q}$, with $M=\operatorname{diag}\left(m_{1}, m_{2}\right)$.
(b) $[1 \mathrm{pt}] V(q)=\frac{1}{2} k_{1} q_{1}^{2}+\frac{1}{2} k_{2} q_{2}^{2}$.
(c) $[1 \mathrm{pt}] L(q, \dot{q})=\frac{1}{2} m_{1} \dot{q}_{1}^{2}+\frac{1}{2} m_{2} \dot{q}_{2}^{2}-\frac{1}{2} k_{1} q_{1}^{2}-\frac{1}{2} k_{2} q_{2}^{2}$.
(d) $[1 \mathrm{pt}] D(\dot{q})=\frac{1}{2} c_{1} \dot{q}_{1}^{2}+\frac{1}{2} c_{2} \dot{q}_{2}^{2}$.
(e) $[2 \mathrm{pts}] \tau=\left[\begin{array}{c}F \\ -F\end{array}\right]$.
(f)

$$
\frac{\partial L}{\partial \dot{q}}=\left[\begin{array}{l}
m_{1} \dot{q}_{1} \\
m_{2} \dot{q}_{2}
\end{array}\right] \quad[0.5 \mathrm{pt}]
$$

Hence

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=\left[\begin{array}{l}
m_{1} \ddot{q}_{1} \\
m_{2} \ddot{q}_{2}
\end{array}\right] \quad[0.5 \mathrm{pt}]
$$

Also

$$
\frac{\partial L}{\partial q}=-\left[\begin{array}{l}
k_{1} q_{1} \\
k_{2} q_{2}
\end{array}\right] \quad[0.5 \mathrm{pt}]
$$

and overall

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\left[\begin{array}{l}
m_{1} \ddot{q}_{1} \\
m_{2} \ddot{q}_{2}
\end{array}\right]+\left[\begin{array}{l}
k_{1} q_{1} \\
k_{2} q_{2}
\end{array}\right]=-\left[\begin{array}{c}
c_{1} \dot{q}_{1} \\
c_{2} \dot{q}_{2}
\end{array}\right]+\left[\begin{array}{c}
F \\
-F
\end{array}\right] \quad[1 \mathrm{pt}]
$$

having born in mind that

$$
\frac{\partial D}{\partial \dot{q}}=\left[\begin{array}{l}
c_{1} \dot{q}_{1} \\
c_{2} \dot{q}_{2}
\end{array}\right] \quad[0.5 \mathrm{pt}]
$$

(g) The EL equations of motion are

$$
\begin{aligned}
& m_{1} \ddot{q}_{1}+c_{1} \dot{q}_{1}+k_{1} q_{1}=u \\
& m_{2} \ddot{q}_{2}+c_{2} \dot{q}_{2}+k_{2} q_{2}=-u \quad[0.5 \mathrm{pt}]
\end{aligned}
$$

The choice of state variables

$$
x_{1}=q_{1}, \quad x_{2}=\dot{q}_{1}, \quad x_{3}=q_{2}, \quad x_{4}=\dot{q}_{2} \quad[0.5 \mathrm{pt}]
$$

returns the equations

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-\frac{k_{1}}{m_{1}} x_{1}-\frac{c_{1}}{m_{1}} x_{2}+\frac{1}{m_{1}} u \\
\dot{x}_{3} & =x_{3} \\
\dot{x}_{4} & =-\frac{k_{2}}{m_{2}} x_{3}-\frac{c_{2}}{m_{2}} x_{4}+\frac{1}{m_{2}} u
\end{aligned}
$$

i.e.

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k_{1}}{m_{1}} & -\frac{c_{1}}{m_{1}} & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\frac{k_{2}}{m_{2}} & -\frac{c_{2}}{m_{2}}
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
\frac{1}{m_{1}} \\
0 \\
-\frac{1}{m_{2}}
\end{array}\right], \quad[1 \mathrm{pt}] \\
C & =\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

2. [16pts] (Alcohol metabolism) The metabolism of alcohol in the body can be modeled by the normalized nonlinear compartmental model

$$
\begin{align*}
& \dot{x}_{1}=a\left(x_{2}-x_{1}\right)+u \\
& \dot{x}_{2}=b\left(x_{1}-x_{2}\right)-\frac{c x_{2}}{d+x_{2}}+u \tag{1}
\end{align*}
$$

where:

- $x_{1}, x_{2} \in \mathbb{R}$ are the concentrations of alcohol in the compartments;
- $u \in \mathbb{R}$ is the intravenous and gastrointestinal injection rate;
- a, b, c, d are all positive and constant parameters.

Answer the following questions:
(a) [4.5pts] Given a constant input \bar{u}, with \bar{u} a positive constant, determine the equilibrium $\bar{x}=\left(\bar{x}_{1} \bar{x}_{2}\right)^{T}$ of the system. State a condition on \bar{u} that guarantees the equilibrium vector \bar{x} to have both positive components.
(b) [3.5pts] Linearize the dynamics of the compartmental model around the equilibrium pair (\bar{x}, \bar{u}) obtained using the identities

$$
b \frac{\bar{u}}{a}+\bar{u}=\frac{c}{2}, \quad \bar{u}=a d, \quad c=4 b d,
$$

that is determine the matrices A, B in

$$
\dot{\delta x}=A \delta x+B \delta u .
$$

(c) [3pts] For the linearized system obtained in Question (b)

$$
\dot{\delta x}=A \delta x+B \delta u,
$$

set $\delta u=0$ (this corresponds to set $u=\bar{u}$). Determine whether the origin of the resulting system is asymptotically stable, stable or unstable. What is the expected behavior of the solutions of the original nonlinear system (1) with $u=\bar{u}$ that start sufficiently close to the equilibrium \bar{x} ? Motivate your answer.
(d) [5pts] Set $a=3, b=2$ and remember that δu is a scalar (same intravenous and gastrointestinal injection rate). Let the output be

$$
\delta y=\delta x_{1} .
$$

Compute the unitary step response of the linearized system, that is the output response of the linearized system when $\delta x(0)=0$ and $\delta u(t)=1$ for all $t \geq 0$.
Hint If you did not determine the matrices A, B in Question (b), then use the following data

$$
A=\left[\begin{array}{cc}
-3 & 3 \\
2 & -4
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

(a) Solve the equation (bars are omitted from the variables)

$$
\begin{align*}
& 0=a\left(x_{2}-x_{1}\right)+u \\
& 0=b\left(x_{1}-x_{2}\right)-\frac{c x_{2}}{d+x_{2}}+u \tag{0.5pt}
\end{align*}
$$

From the first equation

$$
x_{1}-x_{2}=\frac{u}{a} \quad[0.5 \mathrm{pt}]
$$

which replaced in the second one gives

$$
0=b \frac{u}{a}-\frac{c x_{2}}{d+x_{2}}+u \quad[1 \mathrm{pt}]
$$

returning

$$
x_{2}=\frac{\left(\frac{b}{a}+1\right) u d}{c-\left(\frac{b}{a}+1\right) u}
$$

Hence

$$
x_{1}=\frac{\left(\frac{b}{a}+1\right) u d}{c-\left(\frac{b}{a}+1\right) u}+\frac{u}{a} \quad[0.5 \mathrm{pt}]
$$

x_{2} (and therefore x_{1}) is positive provided that

$$
\left(\frac{b}{a}+1\right) u<c . \quad[1 \mathrm{pt}]
$$

(b) The Jacobians of the right-hand side of (1) are

$$
[1 \mathrm{pt}] \frac{\partial f}{\partial x}=\left[\begin{array}{cc}
-a & a \\
b & -b-\frac{c d}{\left(d+x_{2}\right)^{2}}
\end{array}\right], \quad[0.5 \mathrm{pt}] \frac{\partial f}{\partial u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Under the condition

$$
\left(\frac{b}{a}+1\right) u=\frac{c}{2}, \quad u=a d
$$

the equilibrium is

$$
[1 \mathrm{pt}] x_{2}=d, \quad x_{1}=2 d .
$$

Hence, when the Jacobians are evaluated at this particular equilibrium, they return

$$
[1 \mathrm{pt}] A=\left[\begin{array}{cc}
-a & a \\
b & -b-\frac{c}{4 d}
\end{array}\right]=\left[\begin{array}{cc}
-a & a \\
b & -2 b
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(c) The eigenvalues of A are given by the roots of

$$
s^{2}+(a+2 b) s+a b=0 \quad[0.5 \mathrm{pt}]
$$

namely
$s_{1,2}=\frac{-(a+2 b) \pm \sqrt{(a+2 b)^{2}-4 a b}}{2}=\frac{-(a+2 b) \pm \sqrt{a^{2}+4 b^{2}}}{2} \quad[0.5 \mathrm{pt}]$
[1.5pt] Since a, b are positive parameters, the eigenvalues are real distinct and strictly negative. Hence, the origin of the linearized system is asymptotically stable. [0.5pt] The solutions that start sufficiently close to the origin converge asymptotically to it.
(d) For the given values of a, b, the linearized system matrices are

$$
A=\left[\begin{array}{cc}
-3 & 3 \\
2 & -4
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad[1 \mathrm{pt}]
$$

Output response to be computed similarly as in Tutorial 7, Exercise 5.
Possibility 1: (Matrix exponential) The matrix A can be decomposed as

$$
A=V D V^{-1}
$$

with

$$
V=\left[\begin{array}{cc}
-1 & 3 \\
1 & 2
\end{array}\right], \quad D=\left[\begin{array}{cc}
-6 & 0 \\
0 & -1
\end{array}\right] . \quad[1 \mathrm{pt}]
$$

Then note that the output-response is given by

$$
\begin{aligned}
y(t) & =C e^{A t} x(0)+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau \\
& =C V \int_{0}^{t} e^{D(t-\tau)} V^{-1} B d \tau \\
& =C V \int_{0}^{t} e^{D(t-\tau)} d \tau V^{-1} B \\
& =C V\left|-D^{-1} e^{D(t-\tau)}\right|_{\tau=0}^{\tau=t} V^{-1} B \\
& =-C V D^{-1} V^{-1} B+C V D^{-1} e^{D t} V^{-1} B
\end{aligned}
$$

Observe that

$$
\begin{aligned}
C V D^{-1} & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{6} & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
-1 & 3
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{6} & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{6} & -3
\end{array}\right] \\
V^{-1} B & =\left[\begin{array}{cc}
-1 & 3 \\
1 & 2
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=-\frac{1}{5}\left[\begin{array}{cc}
2 & -3 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{5} \\
\frac{2}{5}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
y(t) & =-C V D^{-1} V^{-1} B+C V D^{-1} e^{D t} V^{-1} B \\
& =-\left[\begin{array}{ll}
\frac{1}{6} & -3
\end{array}\right]\left[\begin{array}{l}
\frac{1}{5} \\
\frac{2}{5}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{6} & -3
\end{array}\right]\left[\begin{array}{cc}
e^{-6 t} & 0 \\
0 & e^{-t}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{5} \\
\frac{2}{5}
\end{array}\right] \\
& =\frac{1}{30}\left(e^{-6 t}-36 e^{-t}+35\right) . \quad[1 \mathrm{pt}]
\end{aligned}
$$

Possibility 2: (Transfer function and Inverse Laplace transform). The transfer function is given by

$$
\begin{align*}
G(s) & =C(s I-A)^{-1} B=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s+3 & -3 \\
-2 & s+4
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{1}{s^{2}+7 s+6}\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s+4 & 3 \\
2 & s+3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{1}{(s+6)(s+1)}\left[\begin{array}{ll}
s+4 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{s+7}{(s+6)(s+1)} \tag{1.5pt}
\end{align*}
$$

The output transfer function is equal to

$$
\begin{equation*}
Y(s)=G(s) \frac{1}{s}=\frac{s+7}{s(s+6)(s+1)}=\frac{a}{s}+\frac{b}{s+6}+\frac{c}{s+1} \tag{1pt}
\end{equation*}
$$

for $[0.5 \mathrm{pt}] a=\frac{7}{6}, b=\frac{1}{30}, c=-\frac{6}{5}$ which gives again the time response

$$
y(t)=\frac{7}{6}+\frac{1}{30} e^{-6 t}-\frac{6}{5} e^{-t}=\frac{1}{30}\left(e^{-6 t}-36 e^{-t}+35\right) . \quad[1 \mathrm{pt}]
$$

3. [16pts] Consider the linear system

$$
\begin{align*}
& \dot{x}=A x+B u=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \tag{2}\\
& y=C x \quad=\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right] x,
\end{align*}
$$

where $x \in \mathbb{R}^{2}$ is the state vector, $u \in \mathbb{R}$ is the control input and $y \in \mathbb{R}$ is the measured output.
(a) [1pt] Determine the reachability matrix W_{r} and discuss whether the system is reachable or not.
(b) [1pt] Determine the reachable canonical form of the state space equation.
(c) $[1 \mathrm{pt}]$ Determine the reachability matrix \tilde{W}_{r} of the reachable canonical form.
(d) $[1 \mathrm{pt}]$ Determine the gain matrix K such that the eigenvalues of $A-B K$ are equal to the values $\{-1,-1\}$. Write explicitly the feedback $u=-K x$.
(e) [2pts] Determine the observability matrix W_{o} of system (2). Assume that you can choose either a sensor that measures x_{1} or a sensor that measures x_{2}, but not both of them simultaneously. Which sensor would you choose to guarantee the observability of the system? Give the corresponding output matrix C. Motivate your answer.
(f) [1pt] Write the observable canonical form and compute the observability matrix \tilde{W}_{o} of the system in the observable canonical form.
(g) [2pts] Determine the observer gain L that makes the characteristic polynomial of the matrix $A-L C$ coincide with the polynomial $(s+3)^{2}$ and provide the explicit expression of the observer, namely provide the matrices F, G, H in the dynamical system

$$
\dot{\hat{x}}=F \hat{x}+G y+H u .
$$

(h) [4pts] Consider now the case in which $y=x_{1}$. We want to design a new asymptotic observer of dimension 1 instead of 2 . Namely, consider the dynamical system (the so-called reduced order observer)

$$
\begin{align*}
\dot{\xi} & =-g \xi+u-g(1+g) y \tag{3}\\
\hat{x}_{2} & =\xi+g y
\end{align*}
$$

where g is a constant parameter to design, $\xi \in \mathbb{R}$ is the state variable of the reduced order observer, $\hat{x}_{2} \in \mathbb{R}$ is the estimate of the unmeasured state x_{2}.
Introduce the estimation error $e=x_{2}-\hat{x}_{2}$ and derive its dynamics $\dot{e}=f(e)$ explicitly stating the function $f(e)$. Then determine all the values of the parameter g that guarantee the estimation error e to converge exponentially to zero.
(i) [3pts] Using the reduced order observer derived in Question (h) and the state feedback controller $u=-K x$ derived in Question (d), design a dynamic output feedback controller of dimension 1, namely a controller of the form

$$
\begin{align*}
\dot{\xi} & =a \xi+b y \\
u & =c \xi+d y \tag{4}
\end{align*}
$$

with a, b, c, d parameters to be determined, that asymptotically stabilizes the closed-loop system.
Hint Start from the reduced order observer (3) and determine an expression of u that only uses the measurement y and the controller state ξ. Use the same idea as in the design of the output feedback controller [Textbook, Chapter 7].
(j) (Bonus) [5pts] Sketch the main steps that you would take to prove that the proposed dynamic controller yields an asymptotically stable closed-loop system.
Hint There is no need to have answered Question (h) to answer this one. If you did not answer Question (d), use as state feedback controller $u=-k_{1} x_{1}-k_{2} x_{2}$, with k_{1}, k_{2} two real numbers.
(a)
$[0.5 \mathrm{pts}] W_{r}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] ;[0.5 \mathrm{pts}] \operatorname{det} W_{r}=-1 \neq 0 \rightarrow$ system is reachable
(b)

$$
\operatorname{det}(s I-A)=s^{2}-s=: s^{2}+a_{1} s+a_{2} \quad[0.5 \mathrm{pts}]
$$

hence

$$
\dot{z}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] z+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u, \quad[0.5 \mathrm{pts}]
$$

(c)

$$
\tilde{W}_{r}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] . \quad[1 \mathrm{pt}]
$$

(d) The desired characteristic polynomial is

$$
\begin{aligned}
& {[0.5 \mathrm{pt}](s+1)^{2}=s^{2}+2 s+1=: s^{2}+p_{1} s+p_{2}} \\
& K=\left[\begin{array}{ll}
p_{1}-a_{1} & p_{2}-a_{2}
\end{array}\right] \tilde{W}_{r} W_{r}^{-1} \\
& p_{1}=2, \quad p_{2}=1 \\
& \tilde{W}_{r}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
& W_{r}^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
K & =\left[\begin{array}{ll}
3 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
{[0.5 \mathrm{pt}] } & =\left[\begin{array}{ll}
3 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 & 3
\end{array}\right]
\end{aligned}
$$

The feedback is

$$
u=-4 x_{1}-3 x_{2} .
$$

Check

$$
\begin{aligned}
A-B K & =\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
4 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1 \\
-4 & -3
\end{array}\right]
\end{aligned}
$$

whose characteristic polynomial is indeed $s^{2}+2 s+1$.
(e) $W_{0}=\left[\begin{array}{ll}c_{1} & c_{2} \\ c_{1} & c_{1}\end{array}\right][0.5 \mathrm{pts}]$; det $W_{0}=c_{1}\left(c_{1}-c_{2}\right)[0.5 \mathrm{pts}]$. To be observable, it must be $c_{1} \neq 0$ and $c_{1} \neq c_{2}$. Since we can have either (i) $c_{1}=1$ and $c_{2}=0$ or (ii) $c_{1}=0$ and $c_{2}=1$, the only possible case is (i), that is

$$
[1 \mathrm{pt}] C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] .
$$

(f)

$$
\begin{aligned}
& \dot{z}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] z \\
& y=\left[\begin{array}{ll}
1 & 0.5 \mathrm{pts}]
\end{array}\right] \quad \tilde{W}_{0}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right][0.5 \mathrm{pts}]
\end{aligned}
$$

Given the previous choice of C, the system is already in the observer canonical form. Therefore $\tilde{W}_{o}=W_{o}$.
(g)

$$
\begin{gather*}
L=W_{0}^{-1} \tilde{W}_{0}\left[\begin{array}{l}
p_{1}-a_{1} \\
p_{2}-a_{2}
\end{array}\right] \tag{0.5pt}\\
(s+3)^{2}=s^{2}+6 s+9=s^{2}+p_{1} s+p_{2} \\
L=W_{0}^{-1} \tilde{W}_{0}\left[\begin{array}{c}
p_{1}-a_{1} \\
p_{2}-a_{2}
\end{array}\right]=\left[\begin{array}{c}
p_{1}-a_{1} \\
p_{2}-a_{2}
\end{array}\right]=\left[\begin{array}{c}
6+1 \\
9
\end{array}\right]=\left[\begin{array}{l}
7 \\
9
\end{array}\right] \tag{0.5pt}
\end{gather*}
$$

The observer takes the form

$$
\begin{aligned}
\dot{\hat{x}} & =A \hat{x}+B u+L(y-C \hat{x}) \\
& =(A-L C) \hat{x}+B u+L y \\
F & =A-L C, \quad G=L, \quad H=B
\end{aligned}
$$

Hence

$$
\begin{aligned}
F & =A-L C \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]-\left[\begin{array}{l}
7 \\
9
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
-6 & 1 \\
-9 & 0
\end{array}\right], \quad G=\left[\begin{array}{l}
7 \\
9
\end{array}\right], \quad H=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

(h) We have

$$
\begin{aligned}
\dot{e} & =\dot{x}_{2}-\dot{\hat{x}}_{2}=u-\dot{\xi}-g \dot{y}=u-(-g \xi+u-g(1+g) y)-g \dot{x}_{1} \\
& =u-\left(-g \xi+u-g(1+g) x_{1}\right)-g\left(x_{1}+x_{2}\right) \\
& =g\left(\hat{x}_{2}-g x_{1}\right)+g(1+g) x_{1}-g x_{1}-g x_{2} \\
& =-g\left(x_{2}-\hat{x}_{2}\right)-g^{2} x_{1}+g(1+g) x_{1}-g x_{1}=-g e \quad[3 \mathrm{pts}]
\end{aligned}
$$

Hence, the estimation error exponentially converges to zero for all $g>0$ [1pts].
(i) The proposed controller of dimension 1 would be

$$
\begin{aligned}
\dot{\xi} & =-g \xi+u-g(1+g) y \\
{[1 \mathrm{pts}] \hat{x}_{2} } & =\xi+g y \\
u & =-4 y-3 \hat{x}_{2}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\dot{\xi} & =-g \xi-4 y-3(\xi+g y)-g(1+g) y \\
{[1.5 \mathrm{pts}] } & =-(g+3) \xi-\left(4+4 g+g^{2}\right) y \\
u & =-3 \xi-(3 g+4) y
\end{aligned}
$$

Hence, [0.5pts] $a=-(g+3), b=-\left(4+4 g+g^{2}\right), c=-3, d=-(3 g+4)$.
(j) Bonus: [5 pts]
i. First write down the closed-loop system in the variables x, ξ. Observe that

$$
\begin{align*}
\dot{x}_{1} & =x_{1}+x_{2} \\
\dot{x}_{2} & =u=c \xi+d x_{1} \quad[1 \mathrm{pt}] \tag{5}\\
\dot{\xi} & =a \xi+b x_{1}
\end{align*}
$$

ii. By defining $e=x_{2}-\xi-g x_{1}$, the system (5) is transformed to

$$
\begin{align*}
\dot{x}_{1} & =x_{1}+x_{2} \\
\dot{x}_{2} & =u=c\left(x_{2}-e-g x_{1}\right)+d x_{1} \quad[1.5 \mathrm{pts}] \tag{1.5pts}\\
\dot{e} & =-g e
\end{align*}
$$

which in state-space form amounts to

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{e}
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & 1 & 0 \\
d-g c & c & -c \\
0 & 0 & -g
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
e
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-4 & -3 & 3 \\
0 & 0 & -g
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
e
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 1 & 0 \\
-k_{1} & -k_{2} & k_{2} \\
0 & 0 & -g
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
e
\end{array}\right]
\end{aligned}
$$

iii. [1pt] By construction the matrix is Hurwitz, and this proves the claim.

Hint (It should probably be $u=-k_{1} x_{1}-k_{2} \hat{x}_{2}$!) if we initialized with the hint we obtain

$$
\begin{align*}
\dot{x}_{1} & =x_{1}+x_{2} \\
\dot{x}_{2} & =u=-k_{1} x_{1}-k_{2} \hat{x}_{2}=-k_{1} x_{1}-k_{2} x_{2}+k_{2} e \tag{6}\\
\dot{e} & =f(e) .
\end{align*}
$$

[1pt] With e converging exponentially to zero and [1pt] having the matrix

$$
\left[\begin{array}{cc}
1 & 1 \\
-k_{1} & -k_{2}
\end{array}\right]
$$

to be Hurwitz, stability of the closed-loop system is guaranteed.

Figure 2: Negative feedback block diagram considered in Problem 4.
4. [10 pts] Consider the negative feedback control system in Figure 2.

Let $P(s)$ be the transfer function of the linearized model of a car studied e.g. in Lecture 13, namely

$$
P(s)=\frac{b}{s+a}
$$

where a, b are positive parameters. You are asked to design the cruise control of the car in a scenario in which the car is riding on a road whose slope changes periodically, producing a periodic disturbance $d(t)$ that takes the form

$$
d(t)=\bar{d} \sin (\bar{\omega} t),
$$

where $\bar{d}, \bar{\omega}$ are two positive parameters, of which only $\bar{\omega}$ is known. Consider initially a cruise control given by a PI control of the form

$$
C(s)=\frac{k_{p} s+k_{i}}{s}
$$

Assume that the gains k_{p}, k_{i} have been designed in such a way that the closed-loop system is asymptotically stable.
(a) [4pts] Determine the transfer function $G_{e d}(s)$ from the disturbance d to the error e and the steady state error response to the disturbance $d(t)=\bar{d} \sin (\bar{\omega} t)$.
Hint To determine the steady state error response, express $G_{e d}(i \omega)$ in the polar form $M(\omega) \mathrm{e}^{i \theta(\omega)}$.
(b) [2pts] Fix the values $a=0.0101, b=1.32, k_{p}=0.5, k_{i}=0.0051$. Give the numerical expression of the steady state error response derived before. Evaluate the gain ${ }^{1} M(\bar{\omega})$ at $\bar{\omega}=0.1 \mathrm{rad} / \mathrm{sec}$.
(c) [2pts] We want now to design a new controller $C(s)$. Consider the factorization $d_{C 1}(s) d_{C 2}(s)$ of the controller denominator, and let $d_{C 2}(s)=s^{2}+\bar{\omega}^{2}$. Assume that $\frac{n_{C}(s)}{d_{C 1}(s)}$ is the idealized PID control

$$
\frac{n_{C}(s)}{d_{C 1}(s)}=k_{p}+\frac{k_{i}}{s}+k_{d} s
$$

Determine, if possible, the gains of the PID control such that the denominator of the transfer function of the closed-loop system is $s^{4}+s^{3}+3 s^{2}+2 s+1$. To answer this question, set $a=b=\bar{\omega}=1$.

[^0](d) [2pts] Check that the steady state error response is zero when $r=0$ and $d(t)=\bar{d} \sin (t)$.
(a)
\[

$$
\begin{aligned}
G_{e d}(s) & =-\frac{P(s)}{1+C(s) P(s)} \\
& =-\frac{n_{P}(s) d_{C}(s)}{d_{P}(s) d_{C}(s)+n_{P}(s) n_{C}(s)}
\end{aligned}
$$
\]

hence

$$
\begin{aligned}
G_{e d}(s) & =-\frac{\frac{b}{s+a}}{1+\frac{k_{i}+k_{p} s}{s} \frac{b}{s+a}} \\
& =-\frac{b s}{s(s+a)+b\left(k_{i}+k_{p} s\right)} \\
& =-\frac{b s}{s^{2}+\left(a+b k_{p}\right) s+b k_{i}}
\end{aligned}
$$

Since the closed-loop system is asymptotically stable the steady state error response is given by

$$
e(t)=M(\bar{\omega}) \sin (\bar{\omega} t+\theta(\bar{\omega})) .
$$

Compute

$$
\begin{aligned}
G_{e d}(i \omega) & =-\frac{i b \omega}{\left(-\omega^{2}+b k_{i}\right)+i\left(a+b k_{p}\right) \omega} \\
& =-\frac{i b \omega\left[\left(-\omega^{2}+b k_{i}\right)-i\left(a+b k_{p}\right) \omega\right]}{\left(-\omega^{2}+b k_{i}\right)^{2}+\left(a+b k_{p}\right)^{2} \omega^{2}} \\
& =-\frac{i b \omega\left(-\omega^{2}+b k_{i}\right)+b \omega\left(a+b k_{p}\right) \omega}{\left(-\omega^{2}+b k_{i}\right)^{2}+\left(a+b k_{p}\right)^{2} \omega^{2}} \\
& =\frac{i b \omega\left(\omega^{2}-b k_{i}\right)-b \omega\left(a+b k_{p}\right) \omega}{\left(-\omega^{2}+b k_{i}\right)^{2}+\left(a+b k_{p}\right)^{2} \omega^{2}}
\end{aligned}
$$

Hence

$$
G_{e d}(i \omega)=\underbrace{\frac{b \omega}{\sqrt{\left(-\omega^{2}+b k_{i}\right)^{2}+\left(a+b k_{p}\right)^{2} \omega^{2}}}}_{M(\omega)} \mathrm{e} \underbrace{\underbrace{-\left(a+b k_{p}\right) \omega}}_{\theta(\omega)}
$$

from which

$$
e(t)=M(\bar{\omega}) \sin (\bar{\omega} t+\theta(\bar{\omega})) \bar{d} .
$$

(b)

$$
\begin{aligned}
M(\bar{\omega}) & =\frac{b \bar{\omega}}{\sqrt{\left(-\bar{\omega}^{2}+b k_{i}\right)^{2}+\left(a+b k_{p}\right)^{2} \bar{\omega}^{2}}} \\
& =\frac{1.32 \bar{\omega}}{\sqrt{\left(-\bar{\omega}^{2}+1.32 \cdot 0.0051\right)^{2}+(0.0101+1.32 \cdot 0.5)^{2} \bar{\omega}^{2}}} \\
& =\frac{1.32 \bar{\omega}}{\sqrt{\left(-\bar{\omega}^{2}+0.0067\right)^{2}+0.45 \bar{\omega}^{2}}}=1.96752 \quad[1 \mathrm{pt}] \\
\theta(\bar{\omega}) & =\arctan \frac{\left(\bar{\omega}^{2}-b k_{i}\right)}{-\left(a+b k_{p}\right) \bar{\omega}}=-0.0487302 \mathrm{rad} \quad[1 \mathrm{pt}]
\end{aligned}
$$

(c) The transfer function from d to y is given by

$$
\begin{aligned}
G_{y d} & =\frac{P}{1+P C}=\frac{b}{s+a+b C}=\frac{b\left(s^{2}+1\right) s}{\left(s^{2}+1\right)(s+a) s+b\left(k_{p} s+k_{i}+k_{d} s^{2}\right)} \\
& =\frac{\left(s^{2}+1\right) s}{\left(s^{2}+1\right)(s+1) s+k_{p} s+k_{i}+k_{d} s^{2}} \\
& =\frac{\left(s^{2}+1\right) s}{s^{4}+s+s^{3}+s^{2}+k_{p} s+k_{i}+k_{d} s^{2}} \\
& =\frac{\left(s^{2}+1\right) s}{s^{4}+s^{3}+\left(k_{d}+1\right) s^{2}+\left(k_{p}+1\right) s+k_{i}}
\end{aligned}
$$

Hence, $k_{p}=1, k_{i}=1, k_{d}=2$.
(d) The Laplace transform of $d(t)=\bar{d} \sin (t)$ is given by

$$
D(s)=\frac{\bar{d}}{s^{2}+1}
$$

Hence

$$
\begin{aligned}
Y(s) & =G_{y r}(s) D(s)=\frac{\left(s^{2}+1\right) s}{s^{4}+s^{3}+3 s^{2}+2 s+1} \frac{\bar{d}}{s^{2}+1} \\
& =\frac{s \bar{d}}{s^{4}+s^{3}+3 s^{2}+2 s+1}
\end{aligned}
$$

Since closed-loop system is assumed to be stable, the Final Value Theorem can be used to obtain

$$
y_{s s}=\lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0} \frac{s^{2} \bar{d}}{s^{4}+s^{3}+3 s^{2}+2 s+1}=0 .
$$

5. [16pts] Consider a negative feedback system as in Figure 2, where $d=0$, and the process transfer function is

$$
P(s)=\frac{0.5 s+1}{s(s-1)}
$$

Note the unstable pole due to the monomial $s-1$ at the denominator.
(a) [3pts] Consider the Bode diagrams in Figure 3, 4, 5. Determine which Bode diagram (A, B, or C) corresponds to the given process transfer function $P(s)$. Motivate your answer.
Hint To give the right answer it is essential that you recall the phase plot corresponding to an unstable pole. This has been discussed in [Lecture 11, Slide 12]. An example of Nyquist plot of a transfer function with an unstable pole has been discussed in [Lecture 12, Slide 20].
Note Matlab, which was used to generate the Bode diagrams, use the convention that negative numbers have phase -180° instead of 180°.
(b) [2pts] Draw the Nyquist plot (including the circle at infinity and specifying the direction of the curve as the frequency ω goes from $-\infty$ to $+\infty$) corresponding to the Bode diagram that you have chosen in the previous question.
(c) [3pts] For the stability study to follow, it is convenient to compute analytically the phase crossover frequency $\omega_{p c}$. To this purpose, compute the nonzero frequency $\omega_{p c}$ at which the imaginary part of $P\left(i \omega_{p c}\right)$ is zero. Then compute the gain $\left|P\left(i \omega_{p c}\right)\right|$.
(d) [2pts] Using the Nyquist plot and the gain $\left|P\left(i \omega_{p c}\right)\right|$ computed before, explain whether or not the closed-loop system is stable. Motivate your answer.
Hint For the stability study, it is useful to know the gain $\left|P\left(i \omega_{p c}\right)\right|$. If you have not found it, go the next question, answer it and use the finding there to finalise the stability study.
(e) [2pts] Compute the transfer function of the closed-loop system and discuss whether or not its poles have all strictly negative real part. Is your finding consistent with the answer to the previous question?
(f) [4pts] Design a P (proportional) controller

$$
C(s)=k_{p}
$$

such that the closed-loop system
i. is asymptotically stable; and has
ii. a zero steady state error response to a step input and
iii. a constant $e_{\text {steady }}$ steady state error response to a unitary ramp input such that $\left|e_{\text {steady }}\right| \leq 0.1$.
(g) (Bonus) [3pts] Consider again the P controller $C(s)=k_{p}$ that stabilizes the system. Motivate using the Nyquist plot why the value of k_{p} you found in Question (f) i. makes the closed-loop system asymptotically stable.

Figure 3: Bode diagram A.

Figure 4: Bode diagram B.

Figure 5: Bode diagram C.
(a) The correct one is the Bode diagram in Figure 3, as it is inferred by the fact that the unstable pole $s+1$ contribute a positive phase, rather than a negative one, thus causing the phase to raise to $-90^{\circ}[1 \mathrm{pt}]$. The Bode diagram in Figure 4 can be excluded because it has the typical shape corresponding to one stable zero and one stable pole [1pt]. The Bode diagram in Figure 5 can be excluded because the second corner frequency (the one corresponding to the zero) occurs at $\omega=100$, as can be understood from the magnitude diagram, while $P(s)$ has a zero at $2 \mathrm{rad} / \mathrm{sec}[1 \mathrm{pt}]$.
(b) Nyquist diagram
(c)

$$
\begin{aligned}
P\left(i \omega_{p c}\right) & =\frac{i 0.5 \omega_{p c}+1}{i \omega_{p c}\left(i \omega_{p c}-1\right)} \\
& =\frac{i 0.5 \omega_{p c}+1}{-\omega_{p c}^{2}-i \omega_{p c}} \\
& =\frac{\left(i 0.5 \omega_{p c}+1\right)\left(-\omega_{p c}^{2}+i \omega_{p c}\right)}{\sqrt{\omega_{p c}^{4}+\omega_{p c}^{2}}} \\
& =\frac{-1.5 \omega_{p c}^{2}+i\left(\omega_{p c}-0.5 \omega_{p c}^{3}\right)}{\sqrt{\omega_{p c}^{4}+\omega_{p c}^{2}}}
\end{aligned}
$$

Thus the nonzero $\omega_{p c}$ is given by setting $[1 \mathrm{pt}] \omega_{p c}-0.5 \omega_{p c}^{3}=0$, that is

$$
\omega_{p c}=\sqrt{2}
$$

From

$$
P\left(i \omega_{p c}\right)=\frac{i 0.5 \omega_{p c}+1}{i \omega_{p c}\left(i \omega_{p c}-1\right)}
$$

we have

$$
\begin{aligned}
{[1 \mathrm{pt}]\left|P\left(i \omega_{p c}\right)\right| } & =\left.\frac{\sqrt{1+\frac{\omega_{p c}^{2}}{4}}}{\omega_{p c} \sqrt{\omega_{p c}^{2}+1}}\right|_{\omega_{p c}=\sqrt{2}} \\
& =\left.\frac{1}{2} \frac{\sqrt{\omega_{p c}^{2}+4}}{\omega_{p c} \sqrt{\omega_{p c}^{2}+1}}\right|_{\omega_{p c}=\sqrt{2}} \\
& =\frac{1}{2} \frac{\sqrt{6}}{\sqrt{2} \sqrt{3}} \\
& =\frac{1}{2} .
\end{aligned}
$$

(d) Since the Nyquist plot is crossing the real axis at the point $\left(-\frac{1}{2}, 0\right)$, the number of net clockwise encirclements of the point $(-1,0)$ is $N=1[1 \mathrm{pt}]$. Since the number of unstable open loop poles is 1 then $P=1$ and the number of unstable poles of the closed-loop system is $Z=2[1 \mathrm{pt}]$. Thus the closed-loop system is unstable. 1 point extra if they specify the number of unstable poles.
(e)

$$
\begin{gathered}
{[1 \mathrm{pt}] \frac{P}{1+P}=\frac{\frac{0.5 s+1}{s(s-1)}}{1+\frac{0.5 s+1}{s(s-1)}}=\frac{0.5 s+1}{s^{2}-0.5 s+1}} \\
{[1 \mathrm{pt}] s_{1,2}=\frac{0.5 \pm \sqrt{0.25-4}}{2},}
\end{gathered}
$$

which confirms that there are two unstable poles in the closed-loop system.
(f) [2pts] The denominator of the closed-loop system transfer function is

$$
s^{2}+\left(\frac{k_{p}}{2}-1\right) s+k_{p}
$$

The roots of the corresponding equation have strictly negative real part if and only if $k_{p}>2$. Regarding the tracking properties, the pole at $s=0$ guarantees a zero steady state error response to a step reference trajectory [1pt]. The steady state error response is given by

$$
[1 \mathrm{pt}] e_{s t e a d y}=\left|\lim _{s \rightarrow 0} s \frac{1}{1+k_{p} \frac{0.5 s+1}{s(s-1)}} \frac{1}{s^{2}}\right|=\left|\frac{1}{k_{p} \frac{1}{-1}}\right|=\frac{1}{\left|k_{p}\right|} .
$$

[1pt] Thus a gain $k_{p} \geq \max \{2,10\}=10$ stabilises the system and gives a steady state error response less than $1 / 10$.
(g) [5pts] From the Nyquist plot we see that if the gain of the P controller is strictly greater than $\left|P\left(i \omega_{p c}\right)\right|^{-1}=2$, then the number of net clockwise encirclements of the critical point becomes -1 (one counterclockwise encirclement), and therefore we have $Z=N+P=0$, thus showing closed-loop stability.

[^0]: ${ }^{1}$ This is the attenuation/amplification factor of the disturbance magnitude.

